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Abstract—It is important and challenging to learn to grasp
different objects with anthropomorphic robotic hands continually
and incrementally. However, most current works do not have this
property: They learn grasp planners using large pre-prepared
datasets, do not generalize well to new objects, and are difficult
to improve continually. Besides, existing continual leaning works
rarely target at anthropomorphic hand grasping, and usually
deal with short streams of experiences. Because of the intrinsic
long stream nature of anthropomorphic hand grasping, it is
hard to utilize off-the-shelf continual learning methods for it. In
this paper, we propose to introduce continual machine learning
into anthropomorphic hand grasping and design the Continual
Learning Framework of Anthropomorphic Grasping (CLFAG
framework). It includes three modules: Data Producer, Grasp Ex-
periences, and Continual Learning Algorithm Acr, thus makes
the continual learning of anthropomorphic grasping possible. To
overcome the catastrophic forgetting problem in long streams
of grasping experiences, we propose a continual learning algo-
rithm based on importance-based regularization and diversity-
aware replay within the CLFAG framework. Furthermore, we
construct a dataset for continual learning of anthropomorphic
grasping. Experiments on constructed dataset and in simulation
demonstrate the effectiveness and superiority of the proposed
approach.

Index Terms—Continual learning, anthropomorphic hands,
grasping.

I. INTRODUCTION

RASPING is one of the most fundamental skills for
robots to interact with objects, because robots usually
need to grasp an object in most of manipulation tasks. Despite
great progress has been made in grasping with parallel-jaw
grippers, parallel grippers can only perform simple object
interactions. Multi-fingered anthropomorphic hands are able
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to perform human-like grasping across various categories of
objects. In ever-changing and unstructured environment, robots
need to learn new knowledge over time as it is not possible
to pre-program everything in advance. The capability to learn
new knowledge and abilities over time without forgetting the
previously learnt knowledge is referred to as continual learning
(CL). Endowing anthropomorphic robotic hand with the ability
to learn to grasp different objects continually over time, could
have enormous societal impact and have immense potential
applications in unstructured environment. For example, to
provide assistance in household of disabled or elder people,
and to resort and package various goods in factories.

Previous works on anthropomorphic robotic hand grasp
generation can be divided into two groups: analysis-based
approaches and learning-based approaches. Analysis-based
approaches rely on the assumption of a fully-observable
environment and the simplification of the physical models
[6], that could scarcely be achieved in real-world scenarios.
Recent years, with the progress of machine learning, especially
deep learning, learning-based approaches for anthropomorphic
robotic grasping have made significant breakthroughs and are
gradually dominating the community. By utilizing supervised
learning or reinforcement learning paradigms, these learning-
based approaches train the grasping policy with large amounts
of annotated data, of which grasp annotations are collected
by humans [52]], with simulation [49] or physical robot tests
[13]. With a large amount of training data, the performance
of learning-based approaches substantially outperforms the
classical analysis-based methods. Although current learning-
based grasping approaches can learn surprising grasp ability,
but they do not have continual learning capability. They
usually base on current deep neural network learning models
and require large batch of annotated samples to train grasp
model. Catastrophic forgetting is a typical issue of current
deep neural network learning models [37]]. This phenomenon
typically leads to a significant performance decrease when
neural network models are trained on sequential experiences
or tasks with samples becoming progressively available over
time. Consequently, these learning-based grasping models do
not generalize well to new objects, and are difficult to improve
continually.

Continual learning aims at alleviating catastrophic forget-
ting in learning process. Existing continual learning works
include regularization-based, rehearsal-based, and architectural
methods [37]. They mainly focus on image classification
tasks. Some works deal with continual learning of other
tasks such as robot perception [27]], reinforcement learning
[43] and language processing [20]. However, introducing con-
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Fig. 1. Continual learning framework of anthropomorphic grasping.

tinual learning into anthropomorphic grasping has not been
investigated up to now. Moreover, existing CL works usually
deal with short streams of tasks or experiences. In contrast,
anthropomorphic grasping is with longer streams of grasping
experiences, in which the grasps of a great many objects have
to be learnt. It is difficult to utilize off-the-shelf continual
learning methods for anthropomorphic hand grasping.

In this paper, we propose to introduce continual machine
learning into anthropomorphic hand grasping and design the
Continual Learning Framework of Anthropomorphic Grasping
(CLFAG framework), as shown in Figm Three modules are in-
cluded in the designed CLFAG framework, i.e., Data Producer,
Grasp Experiences, and Continual Learning Algorithm Aoy,
which enable anthropomorphic robotic hands to learn to grasp
different objects continually and incrementally over time. To
overcome catastrophic forgetting in long grasping stream, we
propose a continual learning algorithm within the CLFAG
framework. The proposed algorithm consists of two major
components: importance-based regularization and diversity-
aware replay. Importance-based regularization regularizes the
update of model parameters according to their importance for
previous experiences, while diversity-aware replay maximizes
the diversity of replayed samples. The two components inter-
acts with each other by mixing buffered samples and incoming
samples of current task, and updating grasp model with a
regularized loss function.

Besides, we construct a dataset for continual learning of
anthropomorphic robotic hand grasping. The dataset includes
more than one million grasp samples using an anthropo-
morphic robot hand, i.e., DLR/HIT Hand II [22], on 270+
objects. With regard to continual grasp learning setting, the
grasping sample set for each object is taken as a new separate
experience to learn continually. We evaluate the proposed
approach and compare it with several mainstream continual
learning approaches on our constructed dataset and in simu-
lation. The results on dataset demonstrated that our methods
are more capable of alleviating catastrophic forgetting in long
stream of grasping experiences, and are with lower loss.
Furthermore, the results on grasping seen objects from YCB

and unseen objects from EGAD! in simulator MuJoCo shown
that, our method achieves significant improvement compared
to baselines in terms of grasp success rate and hand-object
penetration.

The main contributions of this paper are summarized as
follows:

1) We propose the Continual Learning Framework of An-
thropomorphic Grasping (CLFAG framework), which
introduces continual machine learning into anthropo-
morphic hand grasping, and enables anthropomorphic
robotic hands to learn to grasp different objects contin-
ually and incrementally over time. To the best of our
knowledge, this is the first work to deal with continual
learning of anthropomorphic hand grasping.

2) We propose a hybrid algorithm integrating importance-
based regularization with diversity-aware replay for con-
tinual learning of anthropomorphic grasping, which can
prevent forgetting and preserve grasp knowledge well
over long stream of grasping experiences.

3) We construct a dataset for continual learning of anthro-
pomorphic grasping. We evaluate the proposed approach
and compare it with other CL methods on our dataset
and in simulation. Experimental results demonstrate the
effectiveness and superiority of the proposed approach.

We organize the remainder of the paper as follows. In

Section II, we discuss the related works. In Section III, we
describe the proposed continual learning framework of anthro-
pomorphic grasping. In Section IV, we explain the detailed
methodology of our continual learning algorithm. In Section
V, we report and discuss the experimental results. Finally,
we draw conclusions and suggest possible future direction in
Section VI.

II. RELATED WORK

In this section we discuss the most relevant works including
learning-based anthropomorphic robotic hand grasp generation
and continual learning. More thorough reviews on continual
leaning can be found in [37][27][43], and reviews on grasp
learning in [[7][11][24][38].

A. Learning-based anthropomorphic hand grasping

Learning-based anthropomorphic grasping approaches are typ-
ically categorized into supervised learning and reinforcement
learning. The grasp annotations for supervised learning are
obtained either from humans [52], simulation [49], or real
robot tests [13], while the supervisory signals for reinforce-
ment learning are collected with interactive trial and error.
Supervised learning for anthropomorphic grasping. Ac-
cording to whether the grasp configuration is the input or the
output of the learnt model, supervised anthropomorphic grasp
learning can be divided into discriminative or generative. Dis-
criminative methods sample grasp candidates and rank them
use a network. For example, [2][25] train evaluation models
to rank grasps generated by a grasp sampler. [33]] learns a
prior over grasp configurations as a mixture-density network
(MDN) to sample grasp candidates, and learns a grasp success
prediction model with a voxel-based 3D convolutional neural
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network (CNN) to rank grasps. Generative methods generate
grasp configuration directly. For instance, [31][30] utilize deep
neural networks to learn a one-to-one mapping from voxels or
depth image of object to high-DOF grasp configuration. [49]]
presents deep variational grasp generation (DVGG) to generate
high-quality diverse grasp configurations from single-view
observation, which is based on the Conditional Variational
Auto-Encoder (CVAE).

Reinforcement learning for anthropomorphic grasping.
Deep reinforcement learning learns control policies by trial
and error, and has shown promising results. Taking sensory
signals as inputs, dexterous grasping may be performed.
[50] proposes a Generative Attention Learning (GenerAL)
framework for multi-fingered grasping in clutter, in which a
policy gradient formulation and a learnt attention mechanism
are utilized. [[13]] proposes demonstration augmented reinforce-
ment learning for grasping with anthropomorphic hands. [35]]
proposes to learn dexterous grasping by embedding an object-
centric visual affordances within a deep reinforcement learning
loop. [29] proposes a mutifingered grasping method based on
multimodal reinforcement learning, in which fingertip tactile
sensing, joint torques and proprioception are combined to train
the multimodal agent in simulation.

Although great progress has been made in learning-based
anthropomorphic grasping, existing learning-based approaches
generally require large amounts of pre-prepared data to train
grasp planners, do not generalize well to unseen objects,
and are difficult to improve continually after deployment.
This work focuses on continual Learning of anthropomorphic
grasping, and aims to endow the anthropomorphic robotic
grasping models with the ability to learn grasping different
objects continually and incrementally over time.

B. Continual learning

Humans can learn new knowledge and ability throughout life-
times continually without catastrophically forgetting what they
have learnt previously. The ability is referred to as continual
learning (CL). However, conventional machine learning and
neural network models mostly depend upon fixed datasets and
stationary environments, struggle to learn from non-stationary
data distributions over time. CL remains a great challenge
for conventional learning algorithms, since continual acqui-
sition of gradually available information from non-stationary
data distributions generally causes catastrophic forgetting or
interference. CL focuses on alleviating catastrophic forgetting
while accommodating new information effectively. CL algo-
rithms can be categorized into three groups: regularization-
based, rehearsal-based, and architectural methods.
Regularization-based CL methods. Regularization ap-
proaches impose constraints on the update of network pa-
rameters to alleviate catastrophic forgetting. Typical examples
include elastic weight consolidation (EWC) [23]], Synaptic In-
telligence (SI) [51]], and Knowledge Distillation (KD) [19][28].
EWC [23] preserves knowledge of previous tasks by selec-
tively slowing down updating on the weights important to
those tasks, the importance of parameters is measured via the
diagonal of the Fisher Information Matrix. SI [51] estimates

iii

importance of individual synapses in an online fashion over the
entire learning trajectory, and penalizes changes to the most
important synapses, thus learns new tasks with minimal for-
getting. KD [19][28]] preserves a model’s functionality for old
tasks by encouraging the output of previous task layers to be
consistent even when learning a new task. The main drawback
to regularization-based approaches is that it is hard to prevent
forgetting when learning from long task sequences [|16]][27].
Long task sequence means that the model is presented with
many tasks or many experiences.

Replay-based CL methods. To mitigate forgetting, replay
strategy stores a representation of previous data to combine
with new data while update the neural network. Two ways
have been used in context of continual learning: partial replay
and generative replay. For partial replay, all or a subset
of previously learnt input is stored in a replay buffer. For
example, several successful models store a subset of raw
input of previous tasks in a replay buffer [9][4][10][45]. Some
methods that store intermediate representation for replay have
been proposed also [[18[J[[15][8]. Different from storing pre-
vious examples explicitly, generative replay approaches train
a generative model such as a generative adversarial network
(GAN) [14] or an auto-encoder from previously learnt data,
and use it to generate samples. For instance, [44]][1] generate
veridical inputs and [47]][26] generate mid-level CNN feature
representations. The good news for replay-based methods is
that they are effective in continual learning, while the bad news
including the performance is limited by available compute
and memory resource, and they tend to overfit on the replay
memory thus impairing generalization.

Architectural CL methods. The architectural methods
expand model architectures flexibly to accommodate new
information while keeping part of the architectures trained
for preceding tasks. In architecture method, different parts of
model parameters are assigned to different tasks. According
to whether the model structure is expanded, architectural
methods can be categorized into two groups, namely, fixed
networks and dynamic networks. The fixed network methods
permit only inner adjustments such as changes in the weights
and activations. The representative methods of fixed networks
include PackNet [34] and PathNet [12]. PackNet [34] uses
iterative pruning and network re-training to add multiple tasks
to a single network. PathNet utilizes evolutionary strategies
to select pathways that decide the network parameters to
be retrained or updated. PathNet [12] fixes the parameters
along a path learnt on the previous task and evolves a new
group of paths for the new task. Dynamic networks learn
new task by adding new modules to the model while the
previous learnt parameters are kept unchanged. For example,
progressive neural networks (PNN) [40] keeps a group of
pre-trained model for previous learnt tasks, from which PNN
extracts good features by learning lateral connection for model
of the new task. RPSnet [39] employs a random path selection
algorithm to select optimal paths for the new tasks while
encouraging parameter sharing and reuse. Architectural meth-
ods may be quite effective in terms of performance metrics
and reducing forgetting. However, they are usually difficult to
perform efficient knowledge transfer and parameter sharing,
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and involve uncontrolled growth in the parameter space.

Existing works of continual learning focus on alleviating
catastrophic forgetting and are mainly oriented towards image
classification tasks. Introducing continual learning into anthro-
pomorphic grasping has not been investigated up to now also.
Moreover, image classification tasks in existing CL. works are
usually with short task sequence. In contrast, anthropomorphic
grasping are with long sequence. Because of these factors, in-
stead of utilizing contemporary CL methods mentioned above
directly, we propose to introduce continual machine learning
into anthropomorphic hand grasping, design the Continual
Learning Framework of Anthropomorphic Grasping (CLFAG
framework), and explore methodologies from the literature
that are suitable for continual learning of anthropomorphic
grasping [51][9]], adapting and integrating methods according
to the long stream challenge of grasping as continual learning
algorithm of anthropomorphic grasping.

III. CONTINUAL LEARNING FRAMEWORK OF
ANTHROPOMORPHIC GRASPING

To enable anthropomorphic robotic hands to learn to grasp
different objects continually and incrementally over time, we
design the Continual Learning Framework of Anthropomor-
phic Grasping (CLFAG framework), which is shown in Figl[l}
The CLFAG framework provides the conceptual foundation
for continual learning of anthropomorphic grasping. There are
three modules in the framework: Data Producer, Grasp Experi-
ences, and Continual Learning Algorithm Ac . Data Producer
generates a stream of anthropomorphic grasping experiences
e;. Grasping Experiences e; are sequentially accessible by the
Continual Learning Algorithm Acy with its internal grasp
model and knowledge base. Directly interacting with the
algorithm A¢y, the evaluator computes performance metrics
p;. Detail of the CLFAG framework is described below.

In CLFAG framework, data is modeled as a sequential
non-iid learning experiences, i.e., anthropomorphic grasping
experiences:

E=(e1,e2...,en) (D

Anthropomorphic grasping experiences are generated by the
Data Producer in simulations or practical systems. A learning
experience e; consists of a set of grasp samples of an object
which can be used to update the grasp model. A grasp sample
is represented as (P,g), where P is the observation of an
isolated object and g is a grasp. Possible options of P include
RGB image, point cloud and RGB-D image. The model M
takes the observation P as input and predicts high quality
grasps. Each grasp g is expressed by a hand wrist pose p and
a hand joint configuration 0, i.e. g = {p, 0}. The hand wrist
pose p is given in special Euclidean group SF(3), consisting
of the translation t = [t,,t,,t,] and orientation quaternion
q = [¢w, 4z, Gy, ¢-]. The hand joint configuration 6 is denoted
by the actual degree of freedom of the anthropomorphic robot
hand, for example, 8 € R?° for anthropomorphic robot hand
DLR/HIT Hand II. The proposed CLFAG framework supports
different anthropomorphic robot hands such as Shadow Dex-
terous Hand [42], Schunk five-finger hand [41]], and DLR/HIT

Current grasp
experience €;
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~

\y/Grasp\\
7~ _model _/

<=
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Fig. 2. Schematic view of the proposed hybrid algorithm for continual

learning of anthropomorphic grasping.

Hand II [22]. This paper uses DLR/HIT Hand II as a case study
for implementation of the CLFAG framework.

During training, a continual learning algorithm Acp pro-
cesses grasp experiences sequentially and uses them to update
the internal grasp model and the knowledge base. The knowl-
edge base is usually represented as specific data structures,
such as replay buffer and neural network’s trained weights. In
CLFAG framework, each CL algorithm has a training mode
and an evaluation mode. Training mode is used to update the
model, and evaluation mode may be used to process streams
of experiences for test purpose.

The continual learning framework of anthropomorphic
grasping can be formalized as follows.

Definition. (Continual Learning Framework of Anthropo-
morphic Grasping). A continual learning algorithm Acp is
expected to update its internal state, e.g. its internal grasp
model M and knowledge base, based on a non-stationary
sequentially accessible stream of anthropomorphic grasping
experiences (ei,...,e,). The grasping experiences can be
obtained from simulations or practical systems. The objective
of A¢yr is to improve its performance on a set of grasp metrics
(pl, o ,pm) as evaluated on a test stream of experiences

(el ... eh).

IV. THE PROPOSED HYBRID CONTINUAL LEARNING
ALGORITHM

We first describe our algorithm at a high level here. It
consists of two major components: importance-based regu-
larization and diversity-aware replay. The schematic view of
the proposed algorithm is given in Fig[2] Importance-based
regularization preserves previous knowledge in model param-
eter space by updating model parameters according to their
importance, while diversity-aware replay keeps knowledge
in sample space by maximizing the diversity of samples in
the replay buffer. Importance-based regularization interacts
with diversity-aware replay by mixing buffered samples and
samples of current experience to update the grasp model. We
provide details of two major components in the following
subsections.

A. Importance-based regularization

To overcome catastrophic forgetting in parameter space, the
importance-based regularization component identifies impor-
tant parameters for previous tasks and slows down their
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update. Our importance-based regularization relies on synaptic
intelligence [51]], a continual learning method that computes
the importance of each parameter online and penalizes changes
to important synapses. We mix the buffered samples and
samples of current experience, and perform update to the grasp
model by adding an importance-based regularization term to
the grasp loss with respect to the mixed samples.

More specifically, for each incoming mini-batch B,, drawn
from current grasp experience e;, the algorithm retrieves and
augments another mini-batch B,, from the replay buffer
M. The retrieval and the augmentation of B,, is described
in diversity-aware replay component, i.e., Section IV-B. We
merge B, and B,,. And then we perform the model update
by optimizing the following loss with respect to the parameters
of the grasp model M on merged sample set B,, U B,,.

Li=Li(B,UBy)+cY 90k — i), 2)
where L; is the loss of grasp model M, which is calculated
over the merged sample set B, U B,,, the regularization
term ¢y, Qi (0, — 0))? regularizes changes to parameters,
of which, c is a strength parameter which trades off old tasks
against the new one, k labels each parameter of grasp model,
Qi is the per-parameter importance which is maintained in an
online manner during training and is defined as:

J
=S %% 3)
IR

Note that wi is the parameter specific contribution to
changes in the total loss over the entire trajectory of training,
detailed computation process can be found in [S1]. A#] =
0, — Hi_l is the task-specific parameter distance, the term
(A%)2 ensures that the regularization term carries the same
units as the loss L, the damping parameter ¢ avoids division
by zero. Besides, for the strength parameter, ¢ = 1 indicates
an equal weighting of old and new tasks if wj, is evaluated
precisely. However, because the existence of the noise in
the evaluation of wy, ¢ is typically set smaller than one to
compensate. Due to the long stream peculiarity of the contin-
ual grasp learning, and the kept diverse samples of previous
tasks, we argue to use more smaller ¢ to consolidate most
important information of old tasks in model parameters only,
and to alleviate the saturation-prone property of regularization
methods in the long steam.

B. Diversity-aware Replay

We alleviate catastrophic forgetting in sample space with a
diversity-aware replay component. Our diversity-aware replay
component consists of two steps, namely, memory update with
reservoir sampling and memory retrieval using 3D augmenta-
tion enhanced random sampling. Below we provide the details
of the two steps.

Memory update with reservoir sampling. We adopt
reservoir sampling [48] in the memory update step. Reservoir
sampling selects random samples from the input stream S of
unknown length. Samples in input stream have same proba-
bility of being selected and stored in the replay buffer M. If

|S| is the number of samples observed so far and | M| is the
size of the reservoir (replay buffer), reservoir sampling selects
each samples with a || ‘l probability.

Memory retrieval using 3D augmentation enhanced
random sampling. It is argued that the diversity of samples
is very important in replay-based continual learning method
[3][5]]. Given the observed samples B,,, we sample a mini-
batch B,, from the replay buffer M. To enhance the diversity
of retrieved samples, we apply 3D data augmentation on
B,,. The 3D data augmentation includes jitter, dropout and
rotation. Jitter operation adds a clipped Gaussian noise with
zero mean and standard deviation o to the position of each
point. Noises larger than ., threshold are clipped to t.;p.
The Jitter operation is defined in Eq.(4) and Eq.(5):

Jitter(B,,) = <’Pm + Z7gm>’ = Rbsize><n><37 4)

whereby P,,, denotes the observed pointclouds for objects, z
is the noise, grasp array g,, remains unchanged, z has same
shape bsize x n x 3 with P,,, of which bsize is the number of
samples in B,,, z is from a clipped normal distribution and
defined as:

z = min(teip, M), 5)

where n ~ N(0, 0?), teiip is the threshold for clip. Dropout
augmentation throw away points randomly with max ratio
Tmaz- ROtation augmentation randomly rotates the object P,
and grasp pose p along three axes, and is formulated as
follows:

Rot(Py,) =
Rot(gm) = {pR 0} (6)
Rot(B,,) = (Rot(Pp,), Rot(gm)),

where R = R, ()R, ()R, () is a random rotation matrix,
a, 3,y are the rotated angles along X, Y, Z axis respectively,
and are drawn from uniform distribution U (0, 27). An exam-
ple of 3D augmentation is shown in Fig[3]

V. EXPERIMENTS

In this section, we evaluate our approach on both our con-
structed dataset and in simulation against main stream con-
tinual learning methods. Firstly we describe the experimental
setup including dataset, compared methods, evaluation metrics
and implementation details. Then we evaluate the continual
learning capability of the proposed approach on dataset. Fi-
nally, we compare the grasp performance in simulation.

A. Experimental setup

Dataset. To evaluate our proposed framework and methods for
continual learning of anthropomorphic grasping, we construct
a sequential anthropomorphic grasping dataset based on our
previous work [49]]. The used anthropomorphic robotic hand
is DLR/HIT Hand II. There are more than one million grasp
samples on 300 objects. We firstly remove those objects with
few effective grasps, as a result, 278 objects are preserved. And
then, we build a continual grasp learning setting, the data in
the setting is modeled as an ordered sequence composed of
278 non-iid learning experiences, a learning experience is a

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 15,2023 at 02:56:37 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Cognitive and Developmental Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2023.3284070

JOURNAL OF KTEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020

(a) Original (b) Jitter

Fig. 3. A example of 3D augmentation.

Fig. 4. Grasp samples of each object in dataset as an experience.

set of grasp samples from an individual object, as shown in
Fig[d] The complete 3D point cloud of each object is taken as
observation P. For each experience, we split the grasp samples
into training set, validation set and test set at the ratio of 6:2:2.
Training set and validation set in the sequence are used to train
the grasping models continually, while the test set is used to
test trained models.

Compared methods. We compare the proposed approach
with several mainstream continual learning approaches includ-
ing elastic weight consolidation (EWC) [23]], synaptic intelli-
gence (SI) [51]] and experience replay (ER) [9], and two base-
lines, namely, Finetune and IId-Offline. EWC and SI
overcome forgetting with importance-based regularization. ER
is a simple but effective replay-based approach. It involves
storing a portion of previous data and mixing them with more
recent ones to update the model. ER applies reservoir sampling
for memory update and random sampling for memory
retrieval. Finetune incrementally fine tunes the model without
employing any continual learning strategy. The model can
not overcome catastrophic forgetting and is considered as the
lower-bound. IId-Offline uses all the samples in the dataset in
an offline manner to train the model, and is regarded as the
upper-bound.

Evaluation metrics. For experiment on dataset, we use
Average Loss (L;) and Average Forgetting (F') to evaluate
the continual learning capability of compared methods. The
Average Loss (L;) is the averaged loss of grasp model on
test sets of learnt experiences (e1,ez...,e;—1) so far after
the completion of CL at experience e;. The Mean Average

vi

(c) Dropout (d) Rotation

Loss (mAL) is mean of Average Loss over all experiences
(e1,€2...,€ey,), that is defined in Eq.(7). The Average Forget-
ting (F) is defined upon Average Loss in Eq.(8).

mAL =Y L; @)
=1
1 — .
F=— ;mm(Li — Li_1,0) (8)

We use three quantitative metrics for evaluation in sim-
ulation: Success Rate (SR), the Penetration Depth and
Penetration Volume between the hand mesh and the target
object. The three used metrics consistent with previous lit-
erature [36][17]. The Success Rate (SR) is commonly used
in grasping tasks to measure the stability and quality of the
generated grasps. The Penetration Depth is calculated as the
max intersection distance between the hand vertices and the
object mesh. For the Penetration Volume, we voxelize the
hand-object meshes with voxel size 0.5 cm, and calculate the
intersection volume shared by the two 3D voxels. To calculate
the Penetration Depth and the Penetration Volume, we use the
implementation of [21]]. When the hand collides with the target
object, the Penetration Depth is computed as the maximum of
the distances from vertices of hand mesh to the object surface.

Implementation details. For grasp model M of which
state expects to be updated by continual learning algorithm
Acyp, we adopt the variational grasp generator which is the
core module of DVGG as a case study. We ignore
the two auxiliary steps including object point completion
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TABLE I
HYPERPARAMETERS FOR THE COMPARED METHODS.
Methods Hyperparameter grid Tuned hyperparameter
Finetune P N
1ID-Offline - -
EWC A :[0.1,1,100] A=0.1
SI ¢:[0.1,0.5,1] c=0.5
ER - -
ER-SI(ours) ¢:[0.1,0.5,1] c=05
ER-DA(ours) o = 0.005,tc4p = 0.025,
Tmaz = 0.2
ER-DA-SI(ours) ¢:[0.1,0.5,1] 7 = 0.005, teisp = 0.025,
Tmaz = 0.2,c=0.5

and iterative grasp refinement for clarity. The CL algorithms
including Finetune, EWC, SI, ER, ER-SI, ER-DA and ER-
DA-SI are implemented using Avalanche [32]]. For I1d-Offline,
i.e., the variational grasp generator in DVGG, we use the
implementation of [49]. For training of compared methods,
150 epochs is used, and learning rate is set to 0.002 at start
and divided by 10 when the validation error plateaus. Batch
size is 512. We train all models on a RTX-3090 GPU. We
present the detailed hyperparameters in Table [I}

B. Results on dataset

To demonstrate the ability to overcome catastrophic forgetting
in long grasping stream of the proposed continual learning
algorithm, we compare the the proposed hybrid CL algorithm
with other five methods. They are three typical CL methods,
namely, EWC, SI and ER, and two baselines, i.e., Finetune and
IId-Offline. Our proposed hybrid CL algorithm includes three
variants: ER-SI is the integration of experience replay and
synaptic intelligence, ER-DA is experience replay with data
augmentation, and ER-DA-SI is the integration of experience
replay with data augmentation and synaptic intelligence. As
test loss of model can reflect the quality of the generated grasps
directly, we report and analyze the evolution of test loss along
with training. Besides, when all grasp experiences are visited
and the grasp model is finally trained, the mean average loss
and average forgetting, and the loss on combined test set are
also reported and analyzed.

Evolution of test loss along with training. In Fig[5] We
show how the loss on test set so far without random rotation
evolve along with seeing more tasks, i.e., seeing more objects.
In Figle] we show evolution of the loss on test set with
random rotation. In Fig[5]and Fig[] the x-axis is the number of
experiences. Each experience consists of grasping samples of
an object. Acquire more experiences means grasp samples of
more objects are visited and learnt.The lower and the smoother
the loss is, the better the corresponding continual learning
method is. From left to right in Fig[5] and Figle] memory
size changes with 1K, 5K and 10K. As shown in Figl5| and
Fig[f] the navie Finetune has high loss and oscillates up and
down with a large attitude, indicating catastrophic forgetting
occurs. It is observed that EWC is even worse than Fine-
tune, the possible causes include: the grasp model is trained
from scratch thus the model parameters updated in the early

learnt experiences may be not good enough, and after several
experiences, too high regularization of EWC makes the grasp
model saturated quickly. SI is better than Fineturn, but is still
with high loss and large oscillation. ER has high loss and
are with large oscillation when the buffer size is small, such
as 1K. With the increasing of buffer size, ER performs well
gradually. ER is with low loss and small oscillation when big
buffer size is used, such as with SK and 10K replay buffer. By
contrast, the variants of our proposed method performs well
with lower loss and smaller oscillation. ER-DA-SI achieves
best results, which is very close to the I1d-Offline, even with
only 1K replay buffer. The visualized tendencies of Figly
and Figl| for alternatives with and without random rotation
are similar, indicating that the proposed method is robust to
random rotation.

Mean average loss and average forgetting. Table
summarizes Fig[5] and Figl6] quantitatively by providing the
mean average loss and average forgetting. First, observe that
compared to EWC, SI and ER, ER-DA-SI with small buffer
size 1K shows ~ 60%, ~ 30% and ~ 50% relative reduction
in mean average loss, ~ 80%, ~ 60% and ~ 70% reduction
in forgetting, respectively. It is valuable because this indicated
that ER-DA-SI was able to work under small memory cost.
Under other buffer size conditions, our proposed methods,
including ER-SI, ER-DA and ER-DA-SI, consistently out-
perform other CL methods with a large margin in terms of
mean average loss and forgetting also. Second, similar trend
appears both in test set without rotation and with rotation,
which indicates the robust of proposed methods to random
rotation. Further, compared to IID-Offline, all continual learn-
ing methods show over 30% in mean average losses, gap still
exists.

Loss on combined test set of finally trained model. The
average loss of finally trained models of all compared methods
is shown in Table [[IIl The loss is calculated on combined test
set of all experiences. We provide losses of four scenarios,
namely, loss on test set without rotation (Loss-test-w/o-rot),
loss on test set with rotation (Loss-test-w/-rot), loss on training
set without rotation (Loss-train-w/o-rot) and loss on training
set with rotation (Loss-train-w/-rot). As shown in Table
four losses of Fineturn are quite high and are all above 5.2.
As expected lower bound, losses of IID-Offline are low and
are below 3.6. Corresponding with evolution of test loss along
with training in Fig[5| and Figl6| EWC has high losses around
5.5 which are all larger than those of Fineturn, losses of SI are
around 4.9 and are slightly lower than Fineturn’s. Losses of
ER appear similar tendency with Fig[5|and Fig[6] is high under
small buffer size, while is low under big buffer size. For the
variants of our proposed method, ER-SI gets lowest loss under
10K buffer size, it is on par with the IId-Offline. ER-DA gets
the most significant drop of loss under 1K buffer size, from
11.267 of ER to 3.848. This indicates the data augmentation
on retrieved samples enhanced the diversity of replay samples.
The full armed version of our proposed method, ER-DA-SI
gets mostly lowest loss.

Generally speaking, the proposed CL method performs
quantitatively better than the other typical methods on dataset
with lower average loss and forgetting. It worth noting that
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Fig. 5. The average loss on test set without random rotation so far measured by the end of each experience (object). (a). 1K buffer size is used for replay
related methods. (b). 5K buffer size is used for replay related methods. (c). 10K buffer size is used for replay related methods.
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Fig. 6. The average loss on test set with random rotation so far measured by the end of each experience (object). (a). 1K buffer size is used for replay related
methods. (b). 5K buffer size is used for replay related methods. (c). 10K buffer size is used for replay related methods.

TABLE II
MEAN AVERAGE LOSS AND AVERAGE FORGETTING OF COMPARED METHODS. THE BEST RESULTS ARE REPORTED IN BOLD FONT.
Test-w/o-rot Test-w/-rot
Methods . .
Mean Average Loss mAL |, Forgetting F' | Mean Average Loss mAL | Forgetting F' |
Finetune 7.889 1.368 7.924 1.284
IID-Offline 3.470 _ 3.520 _
EWC 12.046 2.816 12.904 2.887
SI 7.657 1.344 7.686 1.382
BufferSize| M| IK SK 10K 1K 5K 10K 1K 5K 10K 1K 5K 10K
ER 10.723 | 5.094 4.975 1.843 | 0.406 | 0.420 | 10.554 | 5.147 4.980 1.749 | 0.416 | 0.412
ER-SI(ours) 8.853 4.760 4.571 0.526 | 0.380 | 0.401 8.679 | 4.828 4.622 0.582 | 0.394 | 0.409
ER-DA (ours) 5.015 | 4.978 4.838 0.642 | 0504 | 0.468 | 5.015 | 5.021 4.850 0.634 | 0.507 | 0.463
ER-DA-SI(ours) 5.089 | 4.799 4.994 0.509 | 0.403 | 0.518 5.120 | 4.826 5.066 0.512 | 0.421 | 0.517

there is still a large gap between CL methods and the IID-
Offline counterpart, indicating more works for continual learn-
ing of anthropomorphic grasping are still expected.

C. Results in simulation

To demonstrate the effectiveness and superiority of the pro-
posed approach on generating anthropomorphic grasps with
high stability and quality, we conduct experiments in the
physics-based simulator MuJoCo [46]. For comprehensive
evaluation, we use 58 objects from YCB dataset (seen) and 48

objects from EGAD! (unseen). For each object, the complete
3D point cloud is provided to the trained grasp model, the
grasp model generates 20 grasps randomly. In simulator,
we perform grasp with generated grasp configuration for all
objects and calculate used metrics. There are four steps in the
physical simulation process: 1) Fix the object stationary and
initialize the robotic hand with a pre-grasp state, then the hand
approaches the object and executes grasping with the generated
grasp parameters including hand wrist pose and angles of hand
joints until a stable state of the simulator reaches. 2) Then
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TABLE III
LOSS ON COMBINED TEST SET OF FINALLY TRAINED MODEL FOR COMPARED METHODS. THE BEST RESULTS ARE REPORTED IN BOLD FONT.
Methods Loss-test-w/o-rot | Loss-test-w/-rot J. Loss-train-w/o-rot | Loss-train-w/-rot |
Finetune 5.299 5.257 5.298 5.256
1ID-Offline 3.519 3.571 3.521 3.572
EWC 5.501 5.516 5.499 5.514
SI 4.899 4.938 4.897 4.934
BufferSize| M| 1K 5K 10K 1K 5K 10K 1K 5K 10K 1K 5K 10K
ER 11.267 | 4.182 | 3.754 | 10.982 | 4.188 | 3.799 | 11.283 | 4.182 | 3.755 | 10.991 | 4.188 | 3.800
ER-SI(ours) 10419 | 3.829 | 3.576 | 10.122 | 3.888 | 3.586 | 10.416 | 3.832 | 3.577 | 10.135 | 3.890 | 3.587
ER-DA (ours) 3.848 3.803 | 3.771 3.849 3.820 | 3.799 3.844 3.804 | 3.772 3.849 3.824 | 3.798
ER-DA-SI(ours) 3.763 3.710 | 3.751 3.779 3.727 | 3.759 3.766 3.709 | 3.751 3.782 3.730 | 3.761
TABLE IV
COMPARISON RESULTS ON GRASPING SEEN OBJECTS FROM YCB IN SIMULATION. THE BEST RESULTS ARE REPORTED IN BOLD FONT.
Methods Penetration 3 Success Rate(%) T
Depth(cm){ Volume(cm?) |
Finetune 0.824 9.142 32.8
1ID-Offline 0.642 7.273 62.0
EWC 1.014 15.028 36.0
SI 0.733 8.663 33.6
BufferSize| M| 1K 5K 10K 1K 5K 10K 1K 5K 10K
ER 1.262 | 0.668 | 0.608 | 23.204 | 8.021 | 6.340 | 414 | 53.0 | 554
ER-SI(ours) 1.196 | 0.664 | 0.574 | 22908 | 8.108 | 6.255 | 484 | 61.3 | 57.1
ER-DA (ours) 0.612 | 0.584 | 0.547 6.807 6.499 | 6.153 | 54.8 | 55.7 | 555
ER-DA-SI(ours) | 0.552 | 0.532 | 0.527 5.711 5.855 | 6.200 | 55.2 | 56.1 | 58.7

the gravity is present, fingers keep the grasping force till a
stable simulator state reaches or the object falls from the hand.
3) By shaking the hand, the unstable grasps are filtered, and
grasps that keep the object in hand are preserved as successful
ones. 4) Calculate the metrics including Success Rate (SR),
Penetration Depth and Penetration Volume, as mentioned in
Sec.V-A.

The comparison results on grasping seen objects from YCB
and unseen objects from EGAD! in simulation are shown in
Table and Table [V] respectively. As shown in Table
Success Rate (SR) on grasping objects from YCB of our
proposed ER-DA-SI with 1K, 5K and 10K replay buffer are
55.2%, 56.1% and 58.7%, with increases of 13.8%, 3.1%
and 3.3% compared to ER, respectively. Success Rate (SR)
of EWC, SI and Fineturn are lower than that of ER even
with small buffer size such as 1K. The other two variants
of our proposed method, ER-SI and ER-DA, are with higher
Success Rate (SR) than ER. All variants of our proposed
method are with less penetration than other methods. Similar
tendency is shown in Table also. Overall, the proposed
method outperforms other alternatives on grasping object in
simulation with higher success rate and lower penetration
including depth and volume. Moreover, we observe that ER
with 10K buffer, ER-SI, ER-DA, ER-DA-SI outperforms IID-
Offline for unseen EGAD! object dataset, perhaps due to the
bias from the dominant objects in IID-Offline. Qualitative
results shown in Fig[7and Fig[8|demonstrate that our proposed
method is able to generate diverse reasonable grasps.

VI. CONCLUSIONS

In this paper, we propose to introduce continual machine
learning into anthropomorphic hand grasping and design the
Continual Learning Framework of Anthropomorphic Grasping
(CLFAG framework). Within the proposed CLFAG frame-
work, we propose a hybrid algorithm integrating importance-
based regularization and diversity-aware replay for continual
learning of anthropomorphic grasping. We construct a dataset,
and evaluate the proposed approach by comparing it with other
CL methods on our dataset and in simulation. The results on
dataset demonstrated that our methods are more capable of
alleviating catastrophic forgetting in long stream of grasping
experiences, and are with lower loss and smaller forgetting.
The results on grasping seen objects from YCB and unseen
objects from EGAD! in simulator MuJoCo shown that our
method achieves significant improvement compared to other
alternatives in terms of grasp success rate and penetration.

Starting from this work, some future works are worthwhile
considering, for example, neuro-inspired methods for on-
line continual learning of anthropomorphic grasping, dealing
with more CL learning task setting such as anthropomorphic
grasping for different purposes or with different hands, and
further exploration on real-world verification of actual robot
platforms.
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